Epidermal Growth Factor Modulates Fetal Thymocyte Growth and Differentiation

نویسندگان

  • Claudia S. Freitas
  • Sergio R. Dalmau
  • Karla Kovary
  • Wilson Savino
چکیده

In the present study, we used the fetal organ culture (FTOC) technique in order to study a putative effect of epidermal growth factor (EGF) on the thymus ontogeny. Functional EGF receptors and more recently the EGF molecule itself, respectively, on the membrane of epithelial components of thymic stroma and on a few thymocytes in adult thymus, had been reported in the literature. We could observe a dose-dependent decrease in cellularity and a progressive retention of thymocytes in the double-negative (CD4-/CD8-) stage of differentiation when exogenous EGF was added. Epidermal growth factor interfered with both fetal stroma growth and thymocyte development at a precise moment, that is, in the passage from double-negative to the double-positive (CD4+/CD8+) stage. After a 7-day FTOC in the presence of EGF, most cells recovered were Thy-1.2+, c-kit+, TSA1-/int, CD3-, and one of CD44high/CD25int, CD44-/CD25int, or CD44/CD25-. Some developed into gammadeltaTCR+ cells with a mature (CD3+) phenotype, but not into alphabetaTCR+ thymocytes. It seems that EGF addition makes the cultures "nonpermissible" for alphabetaTCR+ thymocyte generation. We report here the presence of a high Mr "EGF-like" molecule on the membrane of fetal thymocytes, which role in the observed effects is under investigation. Further biochemical characterization of this molecule is still required, because its presence was only evidenced on the basis of its antigenicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Differential expression of notch signaling-related transcripts accompanies pro-thymocyte proliferation and phenotype transition induced by epidermal growth factor plus insulin in fetal thymus organ cultures.

Thymus regression upon stressing stimuli, such as infectious diseases, is followed by organ reconstitution, paralleling its development in ontogeny. A narrow window of thymus development was here studied, encompassing the pro-T lymphoid precursor expansion during specification stages, by the use of epidermal growth factor plus insulin (INS) in murine fetal thymus organ cultures. Aiming to discl...

متن کامل

Mechanical stretch induces fetal type II cell differentiation via an epidermal growth factor receptor-extracellular-regulated protein kinase signaling pathway.

Mechanical forces are important for fetal alveolar epithelial cell differentiation. However, the signal transduction pathways regulating this process remain largely unknown. Based on the importance of the extracellular-regulated protein kinase (ERK) pathway in cell differentiation, we hypothesized that this cascade mediates stretch-induced fetal type II cell differentiation. We demonstrate that...

متن کامل

VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression.

T-cell defects and premature thymic atrophy occur in cancer patients and tumor-bearing animals. We demonstrate that exposure of mice to recombinant vascular endothelial growth factor (VEGF) at concentrations similar to those observed in advanced stage cancer patients reproduces this profound thymic atrophy and is highlighted by a dramatic reduction in CD4+/CD8+ thymocytes. We find that VEGF doe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental Immunology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1998